Formation of a nitrogen-rich α -U₂N_{3+x} phase by the reaction of uranium with a stream of ammonia

Masahiro Katsura

Department of Nuclear Engineering, Faculty of Engineering, Osaka University, 565 Yamadaoka 2-1, Suita, Osaka (Japan)

and Hiroyuki Serizawa

Japan Atomic Energy Research Institute, Department of Fuels and Materials Research, 319-11 Tokai-mura, Naka-gun, Ibaraki-ken (Japan)

(Received April 2, 1992; in final form April 13, 1992)

Abstract

The reactions $U + NH_3$ (stream) and $U + N_2$ (stream) were performed in the temperature range from 400 to 800 °C. The results show that the use of a stream of NH_3 leads to the formation of nitrogen-rich uranium sesquinitrides, which cannot be obtained by the reactions of uranium with N_2 under normal pressures, suggesting that a stream of NH_3 possesses higher nitrogen activity compared with N_2 at 1 atm. The experimental results were analysed on the basis of thermodynamic considerations. It was found that enormously high nitrogen pressures would be required to obtain nitrogen-rich uranium sesquinitride as prepared by the reaction of uranium with a stream of NH_3 if one tried to prepare this material by the reaction of uranium with N_2 .

1. Introduction

It is now generally admitted that, in the binary uranium-nitrogen system, there exist four compounds, uranium mononitride (UN), α -uranium sesquinitride (α -U₂N₃), β -uranium sesquinitride (β -U₂N₃) and uranium dinitride (UN₂). The structure of UN is NaCl-type f.c.c. Although both α -U₂N₃ and β -U₂N₃ are termed uranium sesquinitride, they are different compounds: α -U₂N₃ crystallizes in an Mn_2O_3 b.c.c. structure and β -U₂N₃ possesses an La₂O₃-type h.c.p. structure. The structure of UN_2 is CaF_2 -type f.c.c. Although α - U_2N_3 and UN_2 are crystallographically dissimilar, α -U₂N₃ may be regarded as a derivation from the fluorite type of structure, by removal of nitrogen atoms from the UN₂ lattice in a regular way, resulting in a distorted CaF₂ structure. This means that there exists a solid solubility between α -U₂N₃ and UN₂, and nitrides in this range may be expressed by a chemical formula α -U₂N_{3+x} $(0 \le x \le 1)$. However, as claimed by some workers, the existence of stoichiometric UN₂ still remains in doubt. Even though UN₂ could exist in the U–N system, its preparation would require an enormously high nitrogen pressure.

 α -U₂N_{3+x} is usually prepared by the reaction of metallic uranium or UH₃ with N₂ gas at normal pressure. The *P*-*T*-*C* (equilibrium nitrogen pres-

sure-temperature-composition) relationships have been obtained by equilibrating α -U₂N_{3+x} prepared by the reaction between uranium and N₂ with nitrogen gas in the pressure range from 13.3 Pa (10⁻² Torr) to 100 kPa (760 Torr) by several workers [1–5]. The measured composition of α -U₂N_{3+x} lies between N:U=1.53 and N:U=1.70. The N:U ratio of α -U₂N_{3+x} is determined uniquely for given temperature T and nitrogen pressure P_{N_2} . At a fixed temperature, the N:U ratio tends to increase as P_{N_2} is increased. This feature is understood to suggest that nitrogen activity a_N is raised by enhancing P_{N_2} and, as the consequence, the N:U ratio is increased.

Although Rundle *et al.* [6] stated that the formation of UN₂ required high nitrogen pressure (126 atm), Didchenko and Gortsema [7] reported that UN₂ could be easily prepared by passing NH₃ over UH₃ while raising the temperature to 1000 °C. Trzebiatowski and Troc [8] prepared α -U₂N_{3+x} with N:U ratios from 1.5 to 1.86 by various methods. The nitrides of N:U ratios from 1.5 to 1.71 were prepared by treating uranium powder with N₂. However, uranium nitrides of higher nitrogen content up to UN_{1.86} could be obtained solely by the action of ammonia on UH₃. According to Berthold and Delliehausen [9], the reactions of UN or α -U₂N_{3+x} with N:U < 1.76 with N₂ or NH₃ at pressures up to 200 atm could lead to the formation of UN_{1.83} (in the case of N₂) or UN_{1.86} (in the case of NH₃). They also reported that a stable uranium nitride UN_{1.90±0.02} could be prepared by the reaction of UF₄ with a stream of NH₃.

All the results mentioned above may suggest that the uranium nitrides having N:U ratios above 1.80 can be obtained only by the action of high nitrogen pressure or by use of a stream of NH₃. Katsura [10] has carried out a thermodynamic analysis to elucidate why flowing NH₃ can possess extremely high nitrogen activities and he has shown that the nitrogen activity exhibited by flowing NH₃ may be controlled by $P_{\rm NH_3}/P_{\rm H_2}^{3/2}$. He has also carried out some preliminary reaction experiments giving support to the theoretical analysis. Very recently, Katsura [11] has reported in this journal a more detailed thermodynamic study of nitride and hydride formation by the reaction of metals with NH₃ and derived the relation $a_{\rm N} = (1/K_{\rm P})P_{\rm NH_3}/P_{\rm H_2}^{3/2}$, where $a_{\rm N}$ is the activity of nitrogen dissolved in α -U₂N_{3+x} or, equivalently, that exhibited by flowing gas mixture and $K_{\rm P}$ the equilibrium constant for NH₃ = $\frac{1}{2}N_2 + \frac{3}{2}H_2$.

By passing NH₃ through a region held at high temperatures, a state where the dissociation equilibrium $NH_3 = \frac{1}{2}N_2 + \frac{3}{2}H_2$ is not reached may be produced. However, a fraction of NH₃ inevitably decomposes into N₂ and H₂ by catalytic action of the specimen and the wall of the reaction tube. The extent of dissociation of NH₃ into N₂ and H₂ also depends on the flow rate of a stream of NH₃. Since, at a given temperature, the composition of uranium nitride is determined by the nitrogen activity of the gaseous atmosphere to which the nitride is exposed, it is by all means necessary to know the value of $P_{\rm NH_3}/P_{\rm H_2}^{3/2}$, which determines the nitrogen activity of the gaseous phase. Consequently, in dealing thermodynamically with the reaction of uranium with flowing NH₃, the composition of the gaseous phase partic-

ipating in the reaction must be experimentally determined. This point has received so far totally inadequate consideration in the literature. Those who have prepared nitrogen-rich α -U₂N_{3+x} have not given a clear specification of their experimental conditions, and hence the comparison between the results reported by these researchers may not furnish much information as to the thermodynamics of nitrogen-rich uranium sesquinitride formation. For example, none of these workers have analysed the outlet gas. Therefore, their results cannot be used as a basis for theoretical analyses. In order to know how the composition of α -U₂N_{3+x} prepared by use of a stream of NH₃ depends on the relative amounts of NH₃ and H₂ in the gas stream, analysis of the outlet gas should be carried out.

Although a stream of NH_3 has also been used as a nitriding agent to prepare metal nitrides such as Fe_2N , Fe_4N and MoN, little systematic experimental work has been carried out to study how high nitrogen activity can be provided by flowing NH_3 compared with N_2 under normal pressures. In performing the experiments of the reaction of a metal with a stream of NH_3 , the situation is further complicated by the fact that different results may be obtained even under the same conditions of temperature and flow rate unless all the other conditions are the same, including the surface properties and the diameter of the reaction tube, temperature distribution throughout the tube, and the amount and particle sizes of the specimen etc., since the extent of dissociation may also be influenced by all these conditions.

In this work, the reaction of uranium with a stream of NH_3 was carried out in the temperature range from 400 to 800 °C, the composition of the outlet gas being analysed by gas chromatography. Also, for comparison, the reaction of uranium with flowing nitrogen gas (100 kPa \approx 1 atm) was performed in the same temperature range using the same apparatus, since it is felt helpful to have some idea of how the high N:U ratio of α -U₂N_{3+x} can be obtained by the reaction of uranium with a stream of NH₃ compared with that obtained by the reaction of uranium with N₂ at 1 atm carried out in the same apparatus. In this way, the comparison between the reactions $U + NH_3$ (stream) and $U + N_2$ becomes possible under the same conditions of temperature, temperature distribution, flow rate, and the geometric construction of the whole system.

It was found from these experiments that the nitrogen content of α - U_2N_{3+x} obtained by the reaction U+NH₃ was much higher than that of α - U_2N_{3+x} resulting from the reaction U+N₂. These results clearly indicate that the nitrogen activity exhibited by a stream of NH₃ is extremely higher than that of N₂ at 100 kPa (1 atm).

Further, the temperature dependence of the extent of dissociation of NH_3 was examined at a flow rate of 50 ml min⁻¹.

It is also interesting to estimate how high a pressure of N₂ would be required to obtain nitrogen-rich α -U₂N_{3+x} as prepared by the reaction of uranium with a stream of NH₃. For this purpose, the theoretical analysis developed by Katsura [11] was applied to the present experimental results. Also, the thermodynamic quantities for α -U₂N_{3+x} (N:U=1.54–1.64) given by Bugl and Bauer [1] were extrapolated to higher N:U ratios and the nitrogen pressures required for obtaining nitrogen-rich α -U₂N_{3+x} were roughly estimated.

2. Experimental details

2.1. Apparatus and materials

The experimental apparatus used in this work consists of a vacuum system, a gas supply system, a resistance furnace, and a gas chromatography system. The vacuum system consists of three rotary pumps and an oil diffusion pump, by which the whole system can be evacuated to 1.3×10^{-4} Pa (1×10^{-6} Torr). The gas supply system involves a mercury bubbler and flowmeters. The pressure was measured by means of a mercury manometer. The reaction tube made of quartz was 20 mm in diameter and 450 mm in length. The tube was fitted into the cylindrical resistance furnace.

Temperature was measured by a CA thermocouple placed into the quartz tube, the rear end of which was located as close as possible to the specimen. The temperature was controlled by an on-off type of thermoregulator.

The gas chromatography system consisted of a gas chromatograph (type GC-3BT, Shimazu Co. Ltd., Kyoto, Japan), a gas sampler (type MGS gas sampler, Shimazu Co. Ltd., Kyoto, Japan), and an autorecorder manufactured for the present gas chromatograph. PORAPACK Q (mesh 80–100) was packed in the column. Helium gas with purity of 99.999% was used as the carrier gas.

The gases employed in this work, NH_3 (99.99%), H_2 (99.9995%), and N_2 (99.9995%), were supplied from commercial gas cylinders and were fed into the system through stainless steel capillaries without further purification. A metallic uranium ingot was supplied from Japan Power Reactor and Nuclear Development Corporation. The nominal impurities are listed in Table 1.

Element	Concentration (ppm)	Element	Concentration (ppm)	
Ag	< 0.2	Al	4	
в	< 0.1	Cd	< 0.2	
Co	< 5	Cr	8	
Cu	< 3	Fe	7	
Mg	< 2	Mn	< 3	
Ni	2	Si	5	
v	<10	Zr	<50	
С	<30	N	7	
Li	< 1	K	< 1	

TABLE 1

Impurities in the starting uranium metal

2.2. Procedure

2.2.1. Measurement of the extent of dissociation of flowing NH₃

The extent of dissociation of flowing NH_3 was measured as a function of temperature and flow rate. After the system was evacuated to about 1.3×10^{-4} Pa at room temperature, NH_3 gas was introduced and passed through the reaction tube, in which no uranium metal specimen was placed. The flow rate was kept at 50 ml min⁻¹ by the flowmeter. The extent of dissociation of NH_3 into H_2 and N_2 was measured at intervals of several minutes until a constant value of the extent was obtained. The temperature dependence of the extent of dissociation was examined in the temperature range from 300 to 900 °C. Similar measurements were also made in the case where an α -U₂N_{3+x} sample was placed in the centre of the reaction tube.

2.2.2. Reaction of metallic uranium with a stream of NH_3

About 0.2 g of a bright metallic uranium chip was leached in 6 N HNO_3 for about 2 h and washed with water and 2-butyl alcohol. Then it was weighed accurately before being brought into the reaction system. A quartz boat containing the thus pre-treated specimen was placed in the centre of the reaction tube and the system was evacuated to about 1.3×10^{-4} Pa at room temperature. Hydrogen gas was admitted into the reaction tube up to about 40 kPa (300 Torr). Uranium metal was converted to the hydride, UH₃, at 235 °C, and temperature was raised to 600 °C to form finely powdered uranium. After evacuation of the system, the sample was cooled to room temperature. Then, NH_3 gas was constantly supplied into the reaction tube at a flow rate of 50 ml min⁻¹ and the temperature was increased to the desired value. The reaction experiments were performed in the temperature range from 400 to 800 °C for 5 h. The extent of dissociation was determined by the gas analysis of the outlet gas. The specimen was quenched to room temperature after the system was evacuated by a rotary pump at the experimental temperature. The reactions of uranium powder with a stream of N_2 were also carried out under the same conditions. In order to ascertain the establishment of the equilibrium for the case of the reaction of uranium with N_{2} , nitrogen gas was passed over a sample of powdered uranium held at 500 °C. The system was closed at intervals of 1 h to make the system a closed system and the pressure change with time was checked. It was found that 4 h was enough to attain equilibrium at 500 °C. From this experimental result, a reaction time of 5 h was selected for all the experiments performed in this work, except for the reaction of $U+N_2$ at 400 °C.

2.2.3. X-ray analysis and determination of the N:U ratio of α - U_2N_{3+x}

The X-ray diffraction powder patterns of the reaction products were obtained at room temperature with a diffractometer (Rigaku Denki; Geiger flex rad-rA) using crystal-monochromatized Cu K α radiation. The reaction product was embedded in an aluminium sample holder with an epoxy resin in order to avoid the oxidation of the specimen during X-ray diffraction. From the X-ray diffraction patterns obtained, the phases were identified. When the identified phase was α -U₂N_{3+x} only, the lattice parameter of α -U₂N_{3+x} was calculated, and the N:U ratio was determined from the relation between the lattice parameter value and N:U ratio of α -U₂N_{3+x} reported by Tagawa [12].

3. Results and discussion

In order to examine the temperature dependence of the extent of dissociation, NH_3 was passed at a flow rate of 50 ml min⁻¹ through the reaction tube in which a temperature distribution was maintained. The extent of dissociation was studied as a function of the highest temperature in the reaction tube in the range from 400 to 900 °C. The results are shown in Fig. 1. In the case where no α -U₂N_{3+x} sample was placed in the reaction tube, no noticeable dissociation was observed up to 700 °C, although the equilibrium degree of dissociation of NH₃ exceeds 99.0% at 400 °C and 99.9% at 700 °C respectively. An appreciable dissociation of NH₃ was first observed at 750 °C and the extent of dissociation becomes about 43% at 900 °C, but these values of the extent of dissociation are much less than the equilibrium degree of dissociation for the corresponding temperatures. Thus, even at a very high temperature such as 900 °C, the dissociation of NH_3 can be suppressed to a great extent. On the contrary, when the α - U_2N_{3+x} sample was placed in the hottest region of the reaction tube, the dissociation occurred even at 400 °C. As can be seen in Fig. 1, the extent of dissociation is much higher at each temperature compared with the case

Fig. 1. The extent of dissociation of NH_3 as a function of temperature at a flow rate of 50 ml min⁻¹.

of flowing NH₃ in the reaction tube without any α -U₂N_{3+x} sample in it. The powdered α -U₂N_{3+x} sample may act as a catalyst for the decomposition of NH₃ into N₂ and H₂. Nevertheless, the extent of dissociation is still lower than the equilibrium degree of dissociation. Thus, the suppression of the dissociation of NH₃ may be possible by the use of flowing NH₃ even in the case where the α -U₂N_{3+x} sample is inserted in the hottest zone of the reaction tube in the temperature range examined.

As can be seen from Table 2, where the present experimental results are summarized, the N:U ratio of the α -U₂N_{3+x} phase obtained from the reaction of uranium with a stream of NH₃ is higher than that resulting from the reaction U+N₂ if compared at the same temperature, suggesting that the nitrogen activity of a stream of NH₃ is higher than that of N₂ at 100 kPa (1 atm).

Also, as can be seen from the X-ray diffraction pattern, as shown in Fig. 2(a), for the product obtained at 400 °C, the reaction of uranium with flowing NH₃ can provide a homogeneous α -U₂N_{3+x} phase with a high N:U ratio such as 1.83. On the contrary, the X-ray diffraction pattern (Fig. 2(b)) for the product of the reaction U+N₂ at 400 °C reveals that it consists of metallic uranium, α -U₂N_{3+x}, and UN, indicating that the reaction U+N₂ is not completed within 10 h. These results obtained at 400 °C may suggest that NH₃ is much more favourable as a nitriding agent than N₂. Specifically, when the formation of a metal nitride by use of N₂ at low temperatures is difficult, the use of NH₃ instead of N₂ might provide a method for preparing the nitride.

When NH_3 is being supplied constantly as a stream through a hot zone held at a high temperature where a powdered uranium sample is placed, the nitridation reaction may proceed in parallel with the catalytic decomposition of NH_3 until a steady state is reached where the partial pressures of NH_3 ,

TABLE 2

Experimental results of the reaction of uranium with flowing NH₃ and those of uranium with N₂; estimated nitrogen activity a_N and estimated P_{N_2} values

Reaction	Temperature (°C)	Time (h)	Lattice parameter (Å)	N:U ratio of formed U_2N_3	$a_{ m N}$	P _{N2} (atm)
U + NH ₃	400	5	10.591	1.83	4.3×10^{3}	1.8×10^{7}
	500	5	10.615	1.80	1.2×10^{4}	1.4×10^{8}
	600	5	10.629	1.76	2.7×10^{3}	$7.3 imes 10^{6}$
	700	5	10.644	1.71	2.0×10^{3}	$4.0 imes 10^{6}$
	800	5	10.651	1.68	$1.3 imes 10^3$	$1.7 imes 10^6$
U+N ₂	400	10	^a		1	1
	500	5	10.635	1.74	1	1
	600	5	10.648	1.69	1	1
	700	5	10.663	1.63	1	1
	800	5	10.670	1.60	1	1

 $^{a}U+U_{2}N_{3}+UN$ (the reaction is not completed).

Difraction angle, 2heta (degrees)

Fig. 2. X-ray diffraction patterns for (a) the product of the reaction of $U + NH_3$ at 400 °C and for (b) the products of the reaction of $U + N_2$ at 400 °C (O, diffraction peaks for uranium).

H₂, and N₂ and the composition of α -U₂N_{3+x} are all uniquely determined. It should be emphasized, however, that the gas phase is constrained to an unstable non-equilibrium state with respect to the dissociation equilibrium NH₃ $\rightleftharpoons \frac{1}{2}N_2 + \frac{3}{2}H_2$ by flowing NH₃. The gas phase contains two kinds of nitriding agents; one is N₂ and the other is NH₃ as a nitrogen-bearing species. The formation of α -U₂N_{3+x} by action of N₂ may be expressed as

$$\frac{1}{2}N_2 \longrightarrow N \text{ (in } \alpha \text{-} U_2 N_{3+x}) \tag{1}$$

while the nitride formation by NH₃ may be written as follows:

$$NH_3 \longrightarrow N (in \alpha U_2N_{3+x}) + \frac{3}{2}H_2$$
(2)

If, in the case of the reaction of uranium with flowing NH_3 at a given temperature, α -U₂N_{3+x} were formed by the action of N₂ present in the flowing gas, the N:U ratio of the formed α -U₂N_{3+x} would be less than that of α -U₂N_{3+x} obtained by the reaction of uranium with a stream of N₂ (1 atm) at the same temperature, since the partial pressure of N₂ in the gas mixture prepared by flowing NH₃ is always lower than 1 atm. However, as clarified by the present experiments, this is not the case. It is, therefore, concluded that, under NH₃ flow, nitrogen-rich α -U₂N_{3+x} is formed according to reaction (2).

Katsura [11] has derived the following equation expressing the nitrogen activity a_N exhibited by flowing NH₃ on the basis of eqn. (2):

$$a_{\rm N} = \frac{1}{K_{\rm p}} \frac{P_{\rm NH_3}}{P_{\rm H_2}^{3/2}} \tag{3}$$

where $P_{\rm NH_3}$ and $P_{\rm H_2}$ are partial pressures of NH₃ and H₂ respectively measured in atmospheres. This equation implies that, if higher values of $P_{\rm NH_3}/P_{\rm H_2}^{3/2}$

are obtained, then a higher nitrogen activity is attainable. The value of $P_{\rm NH_3}/P_{\rm H_2}{}^{3/2}$ for the gas mixture of NH₃, H₂, and N₂ prepared by flowing NH₃ must be larger than the corresponding value at the dissociation equilibrium since $P_{\rm NH_3}$ is higher than the equilibrium NH₃ partial pressure $P_{\rm NH_3}{}^{\rm eq}$, $P_{\rm H_2}$ is lower than the equilibrium hydrogen partial pressure $P_{\rm H_2}{}^{\rm eq}$, and $K_{\rm P}$ is a constant at a given temperature. As demonstrated by the present work, it is possible to maintain the extent of dissociation of NH₃ well below the equilibrium degree of dissociation even in the presence of α -U₂N_{3+x} (see Fig. 1). High instabilities of flowing NH₃ may provide high nitrogen activities and the value of $P_{\rm NH_3}/P_{\rm H_2}{}^{3/2}$ may be regarded as a measure of the instability.

The values of a_N calculated using eqn. (3) from the present experimental data at each temperature are also given in Table 2. Apparently, the nitrogen activity of flowing NH₃ is much higher than that of N₂ at 1 atm.

Strictly speaking, the nitriding ability of nitrogen-bearing species must be discussed in terms of nitrogen activity. However, the concept of activity is much less appealing to our sense of perception than that of pressure. In order to assess the order of magnitude of P_{N_2} required for the preparation of nitrogen-rich α -U₂N_{3+x} as obtained by use of a stream of NH₃, a rough estimate was performed using the approximate relation $a_N = P_{N_2}^{1/2}$. The estimated nitrogen pressures are also summarized in Table 2. Strictly, the relation $a_N = P_{N_2}^{1/2}$ is only valid in the pressure range where N₂ behaves ideally. Nevertheless, the present rough estimation might imply that an enormously high nitrogen pressure of the order of 10^6-10^7 atm would be required if one were to try to prepare nitrogen-rich α -U₂N_{3+x} as prepared by the use of a stream of NH₃. Special stress or importance should not be attached to physical effects such as an extremely high hydrostatic pressure, but the nitriding abilities arising from high P_{N_2} should be emphasized.

Bugl and Bauer [1] calculated the partial molar enthalpy $\overline{\Delta H}$ and partial molar entropy $\overline{\Delta S}$ for the solution of nitrogen in α -U₂N_{3+x} for several values of the N:U ratio on the basis of their own experimental results, which are summarized in Table 3. The solution of nitrogen in α -U₂N_{3+x} can be expressed as follows:

$$U_2 N_{3+x} + (\Delta x/2) N_2 \longrightarrow U_2 N_{3+x+\Delta x}$$
(4)

This equation expresses that $\Delta x/2$ mol of N₂ dissolves into α -U₂N_{3+x} and α -U₂N_{3+x+\Delta x} forms. At equilibrium, the following relation must hold:

$$\Delta G_{\rm f}^{\rm o}({\rm U}_{2}{\rm N}_{3+x}) + (\Delta x/2)RT \ln P_{{\rm N}_{2}} = \Delta G_{\rm f}^{\rm o}({\rm U}_{2}{\rm N}_{3+x+\Delta x})$$
(5)

where $\Delta G_{\mathbf{f}}^{\circ}(\mathbf{U}_{2}\mathbf{N}_{3+x})$ and $\Delta G_{\mathbf{f}}^{\circ}(\mathbf{U}_{2}\mathbf{N}_{3+x+\Delta x})$ are the standard free energies of formation of α -U₂N_{3+x} and α -U₂N_{3+x+\Delta x} respectively. The relation expressing true equilibrium is obtained by the condition $\Delta x \rightarrow 0$. Using Taylor's expansion and retaining only the first-order term in the limit $\Delta x \rightarrow 0$, the right-hand term of eqn. (5) may be written as

$$\Delta G_{\mathbf{f}}^{\circ}(\mathbf{U}_{2}\mathbf{N}_{3+x+\Delta x}) = \Delta G_{\mathbf{f}}^{\circ}(\mathbf{U}_{2}\mathbf{N}_{3+x}) + (\partial \Delta G_{\mathbf{f}}^{\circ}(\mathbf{U}_{2}\mathbf{N}_{3+x})/\partial x) \Delta x \tag{6}$$

Substitution of eqn. (6) into eqn. (5) gives the following equation:

TABLE 3

Values of the partial molar enthalpy and entropy for solution of nitrogen in α -U₂N_{3+x} reported by Bugl and Bauer [1] and those for α -U₂N_{3+x} with higher N:U ratios estimated by extrapolation

N:U ratio	$\overline{\Delta H}$ (cal (mol N) ⁻¹)	$\overline{\Delta S}$ (cal (mol N) ⁻¹ K ⁻¹)
1.54	-28481	- 17.977
1.56	-26708	-17.449
1.58	-23669	- 15.886
1.60	-21722	-15.355
1.62	-18602	-13.802
1.64	- 17334	-14.234
1.68	- 12210	-11.903
1.71	- 8695	-10.609
1.76	-2838	- 8.453
1.80	1847	-6.728
1.83	5362	-5.434

 $\partial \Delta G_{\rm f}^{\circ}({\rm U}_2{\rm N}_{3+x})/\partial x = \frac{1}{2}RT \ln P_{\rm N_2}$

(7)

(8)

The left-hand side of eqn. (7) is, by definition, the partial molar free energy $\overline{\Delta G}$ for the solution of nitrogen into U_2N_{3+x} . Thus, one obtains

$$\overline{\Delta G} = \overline{\Delta H} - T \overline{\Delta S} = \frac{1}{2}RT \ln P_{N_2}$$

Bugl and Bauer [1] gave both $\overline{\Delta H}$ and $\overline{\Delta S}$ as a function of N:U ratio only up to 1.64. In order to estimate the values of these two thermodynamic quantities for nitrogen-rich α -U₂N_{3+x} as obtained by the reaction of uranium with a stream of NH₃, the values of $\overline{\Delta H}$ and $\overline{\Delta S}$ given by these workers have been linearly extrapolated to higher N:U ratios. The estimated values for $\overline{\Delta H}$ and $\overline{\Delta S}$ are shown in Table 3. By substituting these values in eqn. (8) at a given temperature, the nitrogen pressure required for preparing α -U₂N_{3+x} having high N:U ratios by the reaction of uranium with N₂ can be roughly estimated. In the temperature range from 300 to 900 °C, a nitrogen pressure of the order of 10^5-10^6 atm would be needed in order to prepare α -U₂N_{3+x} with an N:U ratio of 1.83. The estimated order of magnitude of P_{N_2} turns out to be in fairly good agreement with that evaluated from a_N values obtained in the present work using the relation $a_N = P_{N_2}^{1/2}$, although both of the calculations were based on rough estimations. It is interesting that the use of a stream of NH₃ as a nitriding agent can provide extremely high nitrogen activities which might be attained only by the use of currently available high pressure generators if N_2 were to be employed as a nitriding agent. It is also possible to control the nitrogen activity by regulating the value of $P_{\rm NH_3}/P_{\rm H_2}^{3/2}$.

4. Conclusions

The reactions, $U + NH_3$ (stream) and $U + N_2$ (stream) were performed in the temperature range from 400 to 800 °C. It is found from these experiments

that the nitrogen content of α -U₂N_{3+x} formed by the reaction U+NH₃ is much higher than that formed by the reaction U+N₂, suggesting that extremely high nitrogen activity can be obtained by flowing NH₃. A thermodynamic analysis suggests that a very high nitrogen activity corresponding to a nitrogen pressure of the order of $10^{5}-10^{7}$ atm can be obtained from flowing NH₃ under a suitable condition. A rough estimation of how high a nitrogen pressure may be required to obtain UN_{1.83} was made on the basis of the experimentally determined *P*-*T*-*C* relationship of α -U₂N_{3+x} (N:U=1.53-1.64) reported in the literature. The obtained results are in good agreement with the present thermodynamic analysis.

Acknowledgments

The authors wish to thank Mr. H. Takahashi for assistance in carrying out the experimental work and Professor M. Miyake of Osaka University for valuable discussions.

References

- 1 J. Bugl and A. A. Bauer, in J. T. Waber, P. Chiotti and W. N. Miner (eds.), *Compounds* in Nuclear Reactor Technology, Edwards Bros., Ann Arbor, MI, 1964, p. 215.
- 2 P. E. Lapat and R. B. Holden, in J. T. Waber, P. Chiotti and W. N. Miner (eds.), Compounds in Nuclear Reactor Technology, Edwards Bros., Ann Arbor, MI, 1964, p. 225.
- 3 H. Tagawa, J. Nucl. Mater., 51 (1974) 78.
- 4 A. Naoumidis, Ber. Kernforschungsanlage Jülich, 472 (1967).
- 5 F. Müller and H. Ragos, *Thermodynamics of Nuclear Materials*, IAEA, Vienna, 1968, p. 257.
- 6 T. E. Rundle, N. C. Baenziger, A. S. Wilson and R. A. McDonald, J. Am. Chem. Soc., 70 (1948) 99.
- 7 R. Didchenko and F. P. Gortsema, Inorg. Chem., 2 (1963) 1079.
- 8 W. Trzebiatowski and R. Troc, Bull. Acad. Pol. Sci., Ser. Sci. Chim., 10 (86) (1962) 395.
- 9 H. J. Berthold and C. Delliehausen, Angew. Chem., 78 (1966) 750.
- 10 M. Katsura, Solid State Ionics, 49 (1991) 225.
- 11 M. Katsura, J. Alloys Comp., 182 (1992) 91.
- 12 H. Tagawa, J. Atom. Energy Soc. Jpn., 13 (1971) 267.